A METHOD TO ANALYSE VELOCITY STRUCTURE

Becky Arnold
Simon Goodwin
INTRODUCTION

- There are methods looking at spatial structure of star clusters
 - $Q, \Lambda, \Sigma \ldots$ [1], [2], [3]
- Learn a lot from that
- What about velocity structure?
- Very relevant right now (Gaia + others)

THE METHODS IN BRIEF

- Calculate Δr and Δv for every pair
- Sort into Δr bins
- Average Δv in each bin
- Plot Δr against Δv
- Not going into errors
DEFINITIONS OF ΔV

- **Magnitude definition** Δv_M
 - $|v_i - v_j|$
 - Always positive

- **Directional definition** Δv_D
 - $\frac{d\Delta r}{dt}$
 - How fast moving towards/away
DEFINITIONS OF Δv

- **Magnitude definition Δv_M**
 - $| v_i - v_j |$
 - Always positive

- **Directional definition Δv_D**
 - $\frac{d\Delta r}{dt}$
 - How fast moving towards/away
PLUMMER SPHERES

- Low Δr high Δv
- Stars in core move faster
- Clear difference
- Pulls out collapse / expansion
SUBSTRUCTURED DISTRIBUTIONS
SUBSTRUCTURED DISTRIBUTIONS
ERRORS (LOW MASS STARS)

- **Magnitude definition**

The Results

The Errors

The End
ERRORS (LOW MASS STARS)

- Directional definition

Graph showing the distribution of Δν/Δr for different mass ranges greater than $1.0 M_\odot$ (1000 stars), $0.3 M_\odot$ (428 stars), $0.6 M_\odot$ (207 stars), $0.9 M_\odot$ (128 stars), and $1.2 M_\odot$ (83 stars).
ERRORS (UNCERTAINTIES)

- **Magnitude definition**

![Graph showing the probability distribution of differences in radial velocity](image)

- $\sigma_{\text{sim}} = 0.0 \text{ km s}^{-1}$
- $\sigma_{\text{sim}} = 0.8 \text{ km s}^{-1}$
- $\sigma_{\text{sim}} = 0.4 \text{ km s}^{-1}$
- $\sigma_{\text{sim}} = 1.2 \text{ km s}^{-1}$
ERRORS (UNCERTAINTIES)

- **Magnitude definition**

![Graph showing error magnitude definitions](image)
The Method

The Results

The Errors

The End

ERRORS (UNCERTAINTIES)

- Directional definition

![Graph showing error bars with different colors for different values of σ_{sim}.]
ADVANTAGES

- 1D, 2D, 3D
- Any frame of reference
- No assumptions about physical morphology
 - E.g no need to define cluster centre/radius
- Online - https://github.com/r-j-arnold/VSAT
CONCLUSIONS

- Developed a method for studying velocity structure
- Two definitions of Δv
- Robust
- Future work: apply to observational data