Disentangling the role of supernovae, stellar winds and ionising radiation on the structure of galactic discs

František Dinnbier

(University of Cologne)

SILCC collaboration: Stefanie Walch (PH1 Cologne), P. Clark (Cardiff University), D. Derigs (PH1 Cologne), P. Girichidis (AIP Potsdam), S. Glover (ITA Heidelberg), S. Haid (PH1 Cologne), R. Klessen (ITA Heidelberg), T. Naab (MPA Garching), D. Seifried (PH1 Cologne), R. Wünsch (AsU Prague)

6th September 2018
The energy budget

- ionising radiation and winds (early feedback), sharp drop after $t \sim 5 - 10 \text{ Myr}$
- SNe starting after $\sim 3 \text{ Myr}$; they have approximately constant rate
- ionising radiation has smaller coupling efficiency (by factor of $\sim 0.1 - 0.01$ than winds or SNe)
The initial conditions

- box of side lengths $500 \text{ pc} \times 500 \text{ pc} \times 10000 \text{ pc}$ centered at the galactic disc
- resolution 4 pc
- surface density of gas $\Sigma = 10 \, M_\odot \, \text{pc}^{-2}$
- self-consistent modelling of sink particle formation (star clusters) and their feedback
- star clusters populated by a realistic IMF, one SN per $120 \, M_\odot$ of the stellar population
- gravitational acceleration due to gas, sink particles, background stellar potential coupled to mixed BCs
- chemistry H, H^+, H_2, CO, C^+
- no magnetic field for now; spatially constant G_0; no galactic shear

František Dinnbier
SNe, winds and ionising radiation in galactic discs
Modelling stellar feedback

- SNe for $\rho < 10^{-24} \text{ g.cm}^{-3} \rightarrow$ thermal energy injection
- SNe have always fixed radius
- Wind feedback by momentum injection
- Ionising radiation traced by TreeRay
- three thresholds for sink particle formation (implicit parameter; nonuniform SFR):
 $\rho = 2.0 \times 10^{-22} \text{ g.cm}^{-3}$,
 $\rho = 2.0 \times 10^{-21} \text{ g.cm}^{-3}$,
 $\rho = 2.0 \times 10^{-20} \text{ g.cm}^{-3} \rightarrow 24$ simulations

- SNe for $\rho > 10^{-24} \text{ g.cm}^{-3} \rightarrow$ momentum injection
Modelling stellar feedback

- SNe for \(\rho > 10^{-24} \text{ g. cm}^{-3} \) \(\rightarrow \) momentum injection
- SNe for \(\rho < 10^{-24} \text{ g. cm}^{-3} \) \(\rightarrow \) thermal energy injection
- SNe have always fixed radius
- Wind feedback by momentum injection
- Ionising radiation traced by TreeRay
- Three thresholds for sink particle formation (implicit parameter; nonuniform SFR):
 - \(\rho = 2.0 \times 10^{-22} \text{ g. cm}^{-3} \),
 - \(\rho = 2.0 \times 10^{-21} \text{ g. cm}^{-3} \),
 - \(\rho = 2.0 \times 10^{-20} \text{ g. cm}^{-3} \) \(\rightarrow \) 24 simulations

František Dinnbier
SNe, winds and ionising radiation in galactic discs
Modelling stellar feedback

- SNe for $\rho > 10^{-24}\text{ g.cm}^{-3} \to$ momentum injection
- SNe for $\rho < 10^{-24}\text{ g.cm}^{-3} \to$ thermal energy injection
- SNe have always fixed radius
- Wind feedback by momentum injection
- Ionising radiation traced by TreeRay
- Three thresholds for sink particle formation (implicit parameter; nonuniform SFR):
 - $\rho = 2.0 \times 10^{-22}\text{ g.cm}^{-3}$,
 - $\rho = 2.0 \times 10^{-21}\text{ g.cm}^{-3}$,
 - $\rho = 2.0 \times 10^{-20}\text{ g.cm}^{-3} \to$ 24 simulations
Modelling stellar feedback

- SNe for $\rho > 10^{-24}$ g.cm$^{-3}$ → momentum injection
- SNe for $\rho < 10^{-24}$ g.cm$^{-3}$ → thermal energy injection
- SNe have always fixed radius
- Wind feedback by momentum injection
- Ionising radiation traced by TreeRay
- three thresholds for sink particle formation (implicit parameter; nonuniform SFR):
 - $\rho = 2.0 \times 10^{-22}$ g.cm$^{-3}$,
 - $\rho = 2.0 \times 10^{-21}$ g.cm$^{-3}$,
 - $\rho = 2.0 \times 10^{-20}$ g.cm$^{-3}$ → 24 simulations
Overview of the SFR

- For $30 \, M_\odot/kpc^2/\text{Myr}$ (Tammann+ 1994) $\rightarrow \sim 750$ SNe per 100 Myr in the box

![Kennicutt-Schmidt value](image)

<table>
<thead>
<tr>
<th>$n_{\text{sink}} , [\text{cm}^{-3}]$</th>
<th>No FB</th>
<th>S</th>
<th>W</th>
<th>R</th>
<th>WR</th>
<th>SW</th>
<th>SR</th>
<th>SWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td>10664 6</td>
<td>2263 8</td>
<td>7205 8</td>
<td>473 15</td>
<td>606 12</td>
<td>644 6</td>
<td>372 11</td>
<td>334 9</td>
</tr>
<tr>
<td>10^2</td>
<td>17141 24</td>
<td>2737 29</td>
<td>4965 49</td>
<td>398 50</td>
<td>610 45</td>
<td>1901 25</td>
<td>408 50</td>
<td>666 37</td>
</tr>
<tr>
<td>10^1</td>
<td>18316 45</td>
<td>5893 38</td>
<td>5691 71</td>
<td>2125 36</td>
<td>2467 39</td>
<td>3494 36</td>
<td>1423 23</td>
<td>1271 26</td>
</tr>
</tbody>
</table>

- Mass in massive stars at $t=100$ Myr
- Number of Sinks at $t=100$ Myr

Dinnbier et al., in prep.
Overview of the SFR

- For $30 \, M_\odot/kpc^2/\text{Myr}$ (Tammann+ 1994) $\rightarrow \sim 750$ SNe per 100 Myr in the box

<table>
<thead>
<tr>
<th>n_{sink} [cm$^{-3}$]</th>
<th>No FB</th>
<th>S</th>
<th>W</th>
<th>R</th>
<th>WR</th>
<th>SW</th>
<th>SR</th>
<th>SWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td>10664</td>
<td>2263</td>
<td>7205</td>
<td>473</td>
<td>606</td>
<td>644</td>
<td>372</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10^2</td>
<td>17141</td>
<td>2737</td>
<td>4965</td>
<td>398</td>
<td>610</td>
<td>1901</td>
<td>408</td>
<td>666</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>29</td>
<td>50</td>
<td>45</td>
<td>25</td>
<td>50</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>10^1</td>
<td>18316</td>
<td>5893</td>
<td>5691</td>
<td>2125</td>
<td>2467</td>
<td>3494</td>
<td>1423</td>
<td>1271</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>38</td>
<td>71</td>
<td>36</td>
<td>39</td>
<td>36</td>
<td>23</td>
<td>26</td>
</tr>
</tbody>
</table>

Mass in massive stars at t=100 Myr

Number of Sinks at t=100 Myr

Dinnbier et al., in prep.
SNe feedback only
SNe and wind feedback

František Dinnbier

SNe, winds and ionising radiation in galactic discs
Ionising radiation only

František Dinnbier
SNe, winds and ionising radiation in galactic discs
Volume filling fraction of the warm medium
\((300 \, \text{K} < T < 1.0 \times 10^4 \, \text{K}) \)

František Dinnbier

SNe, winds and ionising radiation in galactic discs
Volume filling fraction of the warm-hot medium

\(1.0 \times 10^4 \, K < T < 3.0 \times 10^5 \, K\)

František Dinnbier
SNe, winds and ionising radiation in galactic discs
Volume filling fraction of the hot medium

\[(3.0 \times 10^5 \, \text{K} < T)\]
The mass loading factor

- SNe drive outflows
- winds are unable to drive strong outflows
- when acting together with SNe, ionising radiation tends to decrease mass loading
Conclusions

- Ionising radiation increases the volume filling factor of the warm phase and decreases the volume filling factor of the hot phase.
- When the ionising radiation is included, the values for the VFF are closer to the observed values than with SNe only → ionising radiation is likely to be important to properly model galactic discs.
- When included in self-consistent model of star formation, ionising radiation decreases the SFR substantially more than stellar winds.
- The role of stellar winds is subordinate to ionising radiation in setting the phases of the ISM, and regulating star formation.
Thank you for your attention