Rapidly cooling shocked stellar winds

On the Origin of Globular Clusters and their multiple populations

Richard Wünsch

Edinburgh, 7th September 2018

In collaboration with:
J. Palouš, G. Tenorio-Tagle, S. Silich, D. Szécsi, S. Martínez González,
S. Ehlerová, C. Muñoz-Tuñón, S. Walch

Multiple stellar populations in GCs

- photometric evidence:
\rightarrow split main-sequence (also RGB, SGB, EHB, turn-off points) (Bedin+04, Piotto+07, Bellini+10, Milone $11,12,13,15, \ldots$)
- spectroscopic evidence: \rightarrow variations in light elements abundances \rightarrow anticorrelations among pairs of them (e.g. Na-O, Mg-AI, . . .) Carreta+06,09
- correspondence between both (Milone+15)
- constant Fe (and other hevier elements): (except.: ω Cen, Terzan 5, M2, M22, M54 \rightarrow no SN enrichment; origin from one cloud universal for GCS (and intermed. age clusters): \rightarrow determined by: $\mathrm{M},[\mathrm{Fe} / \mathrm{H}], \mathrm{M} / \mathrm{R}$? \rightarrow age limit 2 Gyr?

Multiple stellar populations in GCs

- photometric evidence:
\rightarrow split main-sequence (also RGB, SGB, EHB, turn-off points) (Bedin+04, Piotto+07, Bellini+10, Milone11,12,13,15, ...)
- spectroscopic evidence:
\rightarrow variations in light elements abundances
\rightarrow anticorrelations among pairs of them (e.g. Na-O, Mg-Al, ...) Carreta $+06,09$
 correspondence between both (Milone+15)
constant F_{e} (and other hevier elements): (except.: wCen, Terzan 5, M2, M22, M54 \rightarrow no SN enrichment; origin from one cloud universal for GCS (and intermed age clusters)

\rightarrow age limit 2 Gyr?

Multiple stellar populations in GCs

- photometric evidence:
\rightarrow split main-sequence (also RGB, SGB, EHB, turn-off points) (Bedin+04, Piotto+07, Bellini+10, Milone11,12,13,15, ...)
- spectroscopic evidence:
\rightarrow variations in light elements abundances
\rightarrow anticorrelations among pairs of them
(e.g. Na-O, Mg-Al, ...) Carreta+06,09
- correspondence between both (Milone+15)
constant Fe (and other hevier elements):
(except.: ω Cen, Terzan 5, M2, M22, M54
\rightarrow no SN enrichment; origin from one cloud
- universal for GCS and intemed. age ousues)
\rightarrow determined by: $\mathrm{M},[\mathrm{Fe} / \mathrm{H}], \mathrm{M} / \mathrm{R}$?
\rightarrow age limit 2 Gyr?

Multiple stellar populations in GCs

- photometric evidence:
\rightarrow split main-sequence (also RGB, SGB, EHB, turn-off points) (Bedin+04, Piotto+07, Bellini+10, Milone11,12,13,15, ...)
- spectroscopic evidence:
\rightarrow variations in light elements abundances
\rightarrow anticorrelations among pairs of them
(e.g. Na-O, Mg-Al, ...) Carreta+06,09
- correspondence between both
(Milone+15)
- constant Fe (and other hevier elements):
(except.: ω Cen, Terzan 5, M2, M22, M54 ...)
\rightarrow no SN enrichment; origin from one cloud
universal for GCs (and intermed. age clusters):
\rightarrow determined by: M, [Fe/H], M/R?
\rightarrow age limit 2 Gyr?

Multiple stellar populations in GCs

- photometric evidence:
\rightarrow split main-sequence (also RGB, SGB, EHB, turn-off points) (Bedin+04, Piotto+07, Bellini+10, Milone11,12,13,15, ...)
- spectroscopic evidence:
\rightarrow variations in light elements abundances
\rightarrow anticorrelations among pairs of them
(e.g. Na-O, Mg-Al, ...) Carreta+06,09
- correspondence between both
(Milone+15)
- constant Fe (and other hevier elements): (except.: ω Cen, Terzan 5, M2, M22, M54 ...)
\rightarrow no SN enrichment; origin from one cloud
- universal for GCS (and intermed. age clusters):
\rightarrow determined by: $\mathrm{M},[\mathrm{Fe} / \mathrm{H}], \mathrm{M} / \mathrm{R}$?

Bastian\&Lardo18
(see review in ARA\&A)
\rightarrow age limit 2 Gyr?

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning (e.g. Gratton+04, Charbonnel+05)
- objects burning hydrogen at high T (20MK+):
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)

Problems:

mass budget problem

- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?
- He abundance over-predicted
$N_{1} / N_{\text {tot }}=f(M, \ldots)$,
but $N_{1} / N_{\text {tot }} \neq\left(R_{G}, \ldots\right)$

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning (e.g. Gratton+04, Charbonnel+05)
- objects burning hydrogen at high $\mathrm{T}(20 \mathrm{MK}+)$:
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16 ...)
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)
mass budget problem
- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?
- He abundance over-predicted
$N_{1} / N_{\text {tot }}=f(M, \ldots)$,
but $N_{1} / N_{\text {tot }} \neq\left(R_{G}, \ldots\right)$

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning (e.g. Gratton+04, Charbonnel+05)
- objects burning hydrogen at high T (20MK+):
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16 ...)
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)
mass budget problem
- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?
- He abundance over-predicted
$N_{1} / N_{\text {tot }}=f(M, \ldots)$,
but $N_{1} / N_{\text {tot }} \neq\left(R_{G}\right.$,

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning
(e.g. Gratton+04, Charbonnel+05)
- objects burning hydrogen at high $\mathrm{T}(20 \mathrm{MK}+)$:
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16 ...)
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)

Problems:
mass budget problem

- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?

He abundance over-predicted

but $N_{1} / N_{\text {tot }} \neq\left(R_{G}\right.$,

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning (e.g. Gratton +04 , Charbonnel+05)
- objects burning hydrogen at high T (20MK+):
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16 ...)
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)

Problems:

- mass budget problem
- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning (e.g. Gratton +04 , Charbonnel+05)
- objects burning hydrogen at high T (20MK+):
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16 ...)
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)

Problems:

- mass budget problem
- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?
- He abundance over-predicted

Self-enrichment scenario

- chem. composition suggests enrichment by hot H burning
(e.g. Gratton+04, Charbonnel+05)
- objects burning hydrogen at high $\mathrm{T}(20 \mathrm{MK}+)$:
- massive stars
(Decressin+07, de Mink+09, Elmegreen17, Wünsch+17, Recchi+17, Szécsi+16 ...)
- AGB stars (d'Ercole+08,10,16, Bekki+17)
- super massive stars (Denissenkov+13, Gieles+18)

Problems:

- mass budget problem
- ~ $50-70 \%$ of enriched stars
- winds/outflows not enough
- 1G escaped?, top-heavy IMF?
- He abundance over-predicted
- $N_{1} / N_{\text {tot }}=f(M, \ldots)$, but $N_{1} / N_{\text {tot }} \neq\left(R_{G}, \ldots\right)$

Milone+16

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds \rightarrow collisions \rightarrow shocked wind \rightarrow outflow
- thermal instability, rapid cooling if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity \Rightarrow clumps fall to the centre; accumulation \Rightarrow self-shielding against EUV radiation - 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- $L_{S C}, M_{S C}: M_{G}$, stellar evolution tracks
- $R_{S C}+$ eventually radial profile $\left(R_{C}, \beta\right)$

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds \rightarrow collisions \rightarrow shocked wind \rightarrow outflow
- thermal instability, rapid cooling
if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity \Rightarrow clumps fall to the centre; accumulation \Rightarrow self-shielding against EUV radiation - 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- $L_{S C}, \dot{M}_{S C} \leftarrow M_{1 G}$, stellar evolution tracks
- $R_{S C}+$ eventually radial profile $\left(R_{C}, \beta\right)$

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds \rightarrow collisions \rightarrow shocked wind \rightarrow outflow
- thermal instability, rapid cooling
if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity \Rightarrow clumps fall to the centre;
accumulation \Rightarrow self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- $L_{S C}, \dot{M}_{S C} \leftarrow M_{1 G}$, stellar evolution tracks
- $R_{S C}+$ eventually radial profile $\left(P_{C}, \beta\right)$

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds \rightarrow collisions \rightarrow shocked wind \rightarrow outflow
- thermal instability, rapid cooling
if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity \Rightarrow clumps fall to the centre; accumulation \Rightarrow self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- $L_{S C}, \dot{M}_{S C} \leftarrow M_{1 G}$, stellar evolution tracks
- $n_{S C}+$ eventually radial profile (n_{C}, β

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds \rightarrow collisions \rightarrow shocked wind \rightarrow outflow
- thermal instability, rapid cooling
if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity \Rightarrow clumps fall to the centre; accumulation \Rightarrow self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- $L_{S C}, \dot{M}_{S C} \leftarrow M_{1 G}$, stellar evolution tracks
- $R_{S C}+$ eventually radial profile $\left(R_{C}, \beta\right)$

Semi-analytic and fully numeric implementation

Semianalytic model:

(Chevalier\&Clegg+85, Silich+04, Wünsch+17)

$$
\begin{gathered}
\frac{1}{r^{2}} \frac{d}{d r}\left(\rho u r^{2}\right)=q_{m} \\
\rho u \frac{d u}{d r}=-\frac{d P}{d r}-q_{m} u-\nabla \Phi \\
\frac{1}{r^{2}} \frac{d}{d r}\left[\rho u r^{2}\left(\frac{u^{2}}{2}+\frac{\gamma}{\gamma-1} \frac{P}{\rho}\right)\right]=q_{e}-Q
\end{gathered}
$$

$$
q_{m}, q_{e} \propto\left(1+\left(r / R_{C}\right)^{2}\right)^{-\beta} \text { for } r<R_{S C}
$$

Mass accumulation:
$M_{\text {acc }}(t)=\int_{t_{b s}}^{t} \int_{0}^{R_{\text {esc }}}\left[q_{m}\left(r, t^{\prime}\right)-q_{m, \text { crit }}\left(r, t^{\prime}\right)\right] d r d t^{\prime}$ rate of the clump formation is given by $q_{m}-q_{m, \text { crit }}$ only clumps formed with $v<v_{\text {esc }}$ accumulate

RHD simulations:

(Wünsch+17):

- AMR code Flash, 512^{3} (finest)
(Fryxell+00)
- opt. thin cooling (Schure+09)
- fixed stellar gravity, self-gravity \rightarrow tree code (Wünsch+18)
- ionising radiation
\rightarrow TreeRay (Wünsch, in prep.)

Semi-analytic and fully numeric implementation

Semianalytic model:
(Chevalier\&Clegg+85, Silich+04, Wünsch+17)

$$
\begin{gathered}
\frac{1}{r^{2}} \frac{d}{d r}\left(\rho u r^{2}\right)=q_{m} \\
\rho u \frac{d u}{d r}=-\frac{d P}{d r}-q_{m} u-\nabla \Phi \\
\frac{1}{r^{2}} \frac{d}{d r}\left[\rho u r^{2}\left(\frac{u^{2}}{2}+\frac{\gamma}{\gamma-1} \frac{P}{\rho}\right)\right]=q_{e}-Q
\end{gathered}
$$

RHD simulations:

(Wünsch+17):

- AMR code Flash, 512^{3} (finest)
(Fryxell+00)
- opt. thin cooling (Schure+09)
- fixed stellar gravity, self-gravity \rightarrow tree code (Wünsch+18)

Stellar evolution

- tracks by D. Szécsi (Bonn stellar evol. code)
\rightarrow Szécsi \& Wünsch (submitted, arXiv:1809.01395)
- $M_{\max }=500 \mathrm{M}_{\odot}, Z=0.02 \mathrm{Z}_{\odot}(\mathrm{IZw} 18) \quad$ vs. $\quad Z=0.4 \mathrm{Z}_{\odot}$ (LMC)

Star cluster wind evolution

- period of instability: $L_{S C}>L_{\text {crit }} \rightarrow$ mass accumulation
- low Z: 1.8-3.8 Myr (before SNe)
- high Z: 4.2-10 Myr (during SNe)

RSG wind + hot star wind \rightarrow cluster wind?

- convergence of the cluster consisting of hot stars to the smooth wind solution tested by Cantó+00, Raga $+01, \ldots$.
- however, does it work also for hot stars mixed with RSGs?
- mass and momentum inserted into a sphere with $r=4$ cells

Simulations with individual sources

- cluster with $M=10^{6} \mathrm{M}_{\odot}$ 2.4 Myr includes:

150 RSGs \rightarrow representedi with 150 sources
~ 7000 massive MS stars \rightarrow represented with 150 sources
\Rightarrow marginally unstable (left)

- cluster with $M=10^{7} \mathrm{M}_{\odot}$ 2.4 Myr includes:
$10 \times$ more RSGs and hot stars \rightarrow represented y 2×150 sources
\Rightarrow fully thermally unstable (right)

Accumulated mass (for $M_{1 \mathrm{G}}=10^{7} \mathrm{M}_{\odot}$)

- inserted $M_{\text {ins }}=10^{5} \mathrm{M}_{\odot}$, accumulated $M_{\text {acc }}=8 \times 10^{4} \mathrm{M}_{\odot}(80 \%)$
- $\mathrm{C}+\mathrm{N}+\mathrm{O}$ constant \Rightarrow no He burning products (good!)
- He mass fraction in accum. mass: 0.7 (max), 0.52 (mean)

Chemical composition

- $\mathrm{Na}-\mathrm{O}$: range reproduced well
- Mg-AI: predicted range smaller
(some stars have correct chem. composition, however, their mass is not accumulated)

Param. space: mass budget

Varied parameters:

- first generation mass: $M_{1 \mathrm{G}}$
- IMF high-mass slope: α (Salpeter $=2.35$)

Param space: population ratio $N_{2} / N_{\text {tot }}$

- 2G stars form with standard IMF (not only low mass stars)
- only stars between 0.08 and $0.8 \mathrm{M}_{\odot}$ considered for N_{1} and N_{2}
- no dynamical mass loss of the first generation assumed

Population ratio correlations

- GC structural params. determined by fitting N -body sims. (Baumgardt \& Hilker18)
- $N_{1} / N_{\text {tot }}$ correlates best with $v_{\text {esc }}$; does not correlate with present mass function
- suggests that ability to keep wind ejecta determines N_{1}, and not dynamical mass loss

Population ratio correlations

- GC structural params. determined by fitting N -body sims. (Baumgardt \& Hilker18)
- $N_{1} / N_{\text {tot }}$ correlates best with $v_{\text {esc }}$; does not correlate with present mass function
- suggests that ability to keep wind ejecta determines N_{1}, and not dynamical mass loss

Summary

Rapidly cooling shocked stellar winds + low Z stellar evolution models

- almost all massive stars winds (including fast ones) can be captured
- 2G stars predicted to form in the cluster centre
- chemical composition of the accumulated mass:
- $\mathrm{C}+\mathrm{N}+\mathrm{O}=$ const, $\mathrm{Na}-\mathrm{O}$ anticorrelation $\rightarrow \mathrm{OK}$
- He mass fraction, Mg-AL anticorrelation \rightarrow not so well
- mass budget:
- correct population ratios can be obtained with IMF slope 1.3; $($ Salpeter $=2.35)$
- with reasonable assumption about 2G IMF
- dynamical mass lost of 1G can make this slope closer to the standard IMF
- fraction of second generation correlates with GC mass \rightarrow in agreement with observations

Thank you!

