### A METHOD TO ANALYSE VELOCITY STRUCTURE

Becky Arnold Simon Goodwin





Software Sustainability Institute



# INTRODUCTION

- There are methods looking at spatial structure of star clusters
  - Q, Λ, Σ ... [1], [2], [3]
- Learn a lot from that
- What about velocity structure?
- Very relevant right now (Gaia + others)

[1] Cartwright & Whitworth (2004) MNRAS 348, 589-598
[2] Allison et al. (2009) MNRAS 395,1449-1454
[3] Maschberger & Clarke (2011) MNRAS 416, 541-546



### THE METHOD IN BRIEF

- $\odot$  Calculate  $\Delta r$  and  $\Delta v$  for every pair
- Sort into ∆r bins
- $\odot$  Average  $\Delta v$  in each bin
- Plot  $\Delta r$  against  $\Delta v$
- Not going into errors



# **DEFINITIONS OF ΔV**

- Magnitude definition  $\Delta v_M$ 
  - | v<sub>i</sub> v<sub>j</sub> |
  - Always positive
- $\odot$  Directional definition  $\Delta v_D$ 
  - $\frac{d\Delta r}{dt}$
  - How fast moving towards/away







# **DEFINITIONS OF ΔV**

- Magnitude definition  $\Delta v_M$ 
  - | v<sub>i</sub> v<sub>j</sub> |
  - Always positive
- $\odot$  Directional definition  $\Delta v_D$ 
  - $\frac{d\Delta r}{dt}$
  - Hr ~t moving towards/away







### **PLUMMER SPHERES**

- Low  $\Delta r$  high  $\Delta v$
- Stars in core move faster

- Clear difference
- Pulls out collapse / expansion



#### The Results

The Errors

#### The End

### SUBSTRUCTURED DISTRIBUTIONS



### SUBSTRUCTURED DISTRIBUTIONS



## ERRORS (LOW MASS STARS)

#### Magnitude definition



### **ERRORS (LOW MASS STARS)**

### Directional definition



## **ERRORS (UNCERTAINTIES)**



## **ERRORS (UNCERTAINTIES)**

#### Magnitude definition



# **ERRORS (UNCERTAINTIES)**

### Directional definition



### **ADVANTAGES**

- ⊙ 1D, 2D, 3D
- Any frame of reference
- No assumptions about physical morphology
  - E.g no need to define cluster centre/radius
- Online https://github.com/r-j-arnold/VSAT

### CONCLUSIONS

- Developed a method for studying velocity structure
- $\odot$  Two definitions of  $\Delta v$
- Robust
- Future work: apply to observational data

