A METHOD TO ANALYSE VELOCITY STRUCTURE

Becky Arnold

Simon Goodwin

Software
Sustainability Institute

INTRODUCTION

- There are methods looking at spatial structure of star clusters
- Q, Λ, Σ... [1], [2], [3]
- Learn a lot from that
- What about velocity structure?
- Very relevant right now (Gaia + others)
[1] Cartwright \& Whitworth (2004) MNRAS 348, 589-598
[2] Allison et al. (2009) MNRAS 395,1449-1454
[3] Maschberger \& Clarke (2011) MNRAS 416, 541-546

THE METHOD IN BRIEF

- Calculate Δr and Δv for every pair
\odot Sort into Δr bins
- Average Δv in each bin
\bigcirc Plot Δr against Δv
- Not going into errors

DEFINITIONS OF ΔV

- Magnitude definition $\Delta \mathrm{v}_{\mathrm{M}}$
- $\left|\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{j}}\right|$
- Always positive
- Directional definition $\Delta \mathrm{V}_{\mathrm{D}}$
$\square \frac{d \Delta r}{d t}$
- How fast moving towards/away

DEFINITIONS OF ΔV

- Magnitude definition $\Delta \mathrm{v}_{\mathrm{M}}$
- $\left|\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{j}}\right|$
- Always positive
- Directional definition $\Delta \mathrm{V}_{\mathrm{D}}$
$\square \frac{d \Delta r}{d t}$
- Hr -t moving towards/away

PLUMMER SPHERES

- Low Δr high Δv
- Stars in core move faster

- Clear difference
- Pulls out collapse / expansion

SUBSTRUCTURED DISTRIBUTIONS

SUBSTRUCTURED DISTRIBUTIONS

ERRORS (LOW MASS STARS)

- Magnitude definition

ERRORS (LOW MASS STARS)

๑ Directional definition

ERRORS (UNCERTAINTIES)

- Magnitude definition

ERRORS (UNCERTAINTIES)

- Magnitude definition

ERRORS (UNCERTAINTIES)

๑ Directional definition

ADVANTAGES

- 1D, 2D, 3D
- Any frame of reference
- No assumptions about physical morphology
- E.g no need to define cluster centre/radius

○ Online - https://github.com/r-j-arnold/VSAT

CONCLUSIONS

- Developed a method for studying velocity structure

๑ Two definitions of Δv

- Robust

๑ Future work: apply to observational data

