ALMA observations of Serpens Main: protostellar evolution at the Class 0 stage

Yusuke Aso (ASIAA, Taiwan) Aso+ '17a, ApJL, 850, L2; Aso+ '18, ApJ, 863, 19A

Naomi HIrano (ASIAA), N. Ohashi, K. Saigo, M. Saito, K. Tomisaka (NAOJ)、Y. Aikawa (The Univ. of Tokyo), S. Takakuwa (Kagoshima Univ.), K. Tomida (Osaka Univ.), M. Machida (Kyushu Univ.), H.-W. Yen (ESO), J. Williams (Univ. of Hawaii)

1. Introduction — Class 0 in star formation

5000 AU

Early phases (starless -> Class 0) cannot be observed in optical/NIR/MIR.

Continuum ——Column density. Structure

Millimeter observations:

[Class 0] $T_{bol} < 70 \text{ K} \Delta t \sim 0.2 \text{ Myr}$

Chemistry — Abundance reflecting thermal history.

Andre '02, Nakamura+ '12, Aso+ '17b

1. Introduction — Serpens Main

3

Serpens Main:

- Star forming cluster.
- Two episodes of star formation,

2 and 0.5 Myr ago.

- *D* = 429 pc, *M* ∼ 30 M_☉ (each subcluster).
- Sub-mm sources (SMM) by JCMT.
- YSOs by Spitzer.
- 1.3 mm sources without counterparts in 70 µm (CARMA, SMA archival data).
- Cyan boxes were observed this time.

Contours: JCMT 850 µm Color: Herschel 70 µm

Dzib +'11, Duarte-Cabral +'10, K. Lee +'14

2. ALMA observations

Atacama Large Millimeter/submilleleter Array (Cycle 3, May 19, 21 2016, PI: Y. Aso)

> Calibrators:

J1751-0939 (Bandpass), Titan (Amp.), J1830+0619 (470 mJy; Phase), J1824+0119 (79 mJy; Phase)

Data reduction : CASA, MIRIAD

	v (GHz)	Δv	Beam Size	σ (mJy/beam)
Continuum	225	4 GHz	0.57"×0.46" (-85°)	~0.1
¹² CO J=2–1	230.5380000	1.27 km s ⁻¹	0.61"×0.50" (-83°)	~3.7
C ¹⁸ O J=2–1	219.5603541	0.083 km s ⁻¹	0.64"×0.52" (-83°)	~12

3. Results — 1.3 mm & 70 μ m

1.3 mm sources faint at 70 µm. >

	SMM11	SMM4A	SMM4B
Deconvolved size (AU)	160x130 (80°)	320x200 (145°)	300x230 (94°)
$M_{ m gas}~(M_{igodot})^{\dagger}$	0.27	> 0.83	0.29

> SMM11 \rightarrow circular shape. > SMM4A \rightarrow high $T_{\rm b}$ ~18 K, high τ . \succ SMM4B \rightarrow extended.

 $+ \kappa(870 \ \mu\text{m})=0.035 \ \text{cm}^2 \ \text{g}^{-1}, \ \beta=1, \ T=20 \ \text{K}$

0.4

0.3

0.2 0

0.1

3. Results — SED

	SMM11	SMM4A	SMM4B
$T_{ m bol}$ (K)	~26	~30	
L_{bol} ($L_{oldsymbol{\odot}}$)	< 0.91	< 2.6	
$L_{ ext{int}}$ (L_{\odot}) †	< 0.04	< 0.3	
$L_{ m submm}$ (L_{\odot}) ††	~0.095	~(0.31

† From 70 μm flux (Dunham +'08), †† From >350 μm fluxes.

350 μm CSO SHARC-II (Suresh +'16), 450, 850 μm JCMT SCUBA (Davis +'99) 1.3 mm ALMA (this work), 3 mm CARMA (K. Lee +'14) 6

➢ All the three are Class 0

 (T_{bol} < 70 K, L_{bol} / L_{submm} < 200).
 ➢ SMM11 is fainter at 70 µm
 → Lower L_{int}.

 (Upper limits include contamination from nearby YSOs.)

<u>4. Analysis</u> — Continuum visibility

SMM11: Similar profiles at different uv-angles.
 Spherical envelope (or face-on disk).

Dividing CLEAN components.
➤ SMM4A: Null point at ~290 m.
→ If boxcar disk then r ~ 240 AU.
➤ SMM4B: Extended envelope, r ~ 590 au & unresolved disk, r ~ 56 AU.

Disk growth? SMM11 \rightarrow SMM4B \rightarrow SMM4A

5. Discussion -12CO J=2-1 outflows

Contour: moment 0 Color: moment 1

Intensity weighted $R \& \theta$.

- > SMM11: Collimated bipolar outflow. $\theta \sim 12^{\circ} 16^{\circ}$.
- > SMM4A: Fan-shaped unipolar outflow. $\theta \sim 59^{\circ}$.
- > SMM4B: Collimated bipolar outflow. $\theta \sim 25^{\circ} 29^{\circ}$.
- → Widening of opening angles (Arce & Sargent '06, Machida & Hosokawa '13).

Yusuke ASO (ASIAA) 5. Discussion — Outflow inclination (SMM11)

 \succ The SMM11 outflow is almost // to the plane of the sky. > Wind-driven shell (parabolic) model: $z = c_0 R^2$, $\vec{V} = v_0 \vec{R}$. \rightarrow inclination angle *i*~80°, c_0 ~4 kAU⁻¹, v_0 ~9 km s⁻¹ kAU⁻¹

5. Discussion — Outflow inclination (SMM4B)

¹²CO moment 0

¹²CO Position-Velocity diagrams

> The SMM4B outflow ejects mass episodically.

➢ If blue and red lobes have different *i* but common *P* at common distances,
→inclination angles *i*_{blue}~36°, *i*_{red}~70°, where *P* ∝ *I_v* * *V* is assumed.

5. Discussion — Outflow dynamical time

 $i = 50^{\circ}$ for SMM4A from major/minor axes ratio of continuum.

	<i>R</i> (au)	<i>M</i> (1e–3M _☉)	<i>P</i> (1e–3M _☉ km s ^{−1})	<i>V</i> (km s⁻¹)	τ _{dyn} (yr)
SMM11	4300	1.1	2.6	29	700
SMM4A	2900	1.6	3.8	6.1	2300
SMM4B	4800	1.6	1.2	19	1200

➢ Optically thin and T = 30 K are assumed.
 M ∝ mom 0, P ∝ mom0 * mom1 / cos i, while V = P / M, τ_{dyn} = R / V.
 ▷ P and W are interestity with to d and in all a stick to d.

 \succ **R** and **V** are intensity-weighted and inclination-corrected.

5. Discussion — $C^{18}O$ abundance

C¹⁸O J=2–1 Contour: moment 0 Color: moment 1 Arrows: outflows

Inter stellar medium: $X(C^{18}O) \sim 5 \times 10^{-7}$ (Lacy+'94, Wilson & Rood '94)

 SMM11: X(C¹⁸O) ~ 1 / 2000 × ISM. Frozen-out (simulation by Aikawa+ '12). E-W extension is due to heating by the outflow.
 SMM4A: Absorption against continuum (T_b~ −9 K).
 SMM4B: X(C¹⁸O) ~ 1 / 50 × ISM. Possibly frozen-out.

5. Discussion — $C^{18}O$ Rotational velocity

SMM11: No significant velocity gradient

 Freeze-out
 SMM4B: blueshfited component

+ Main body, no spinning up ← freeze-out at high vel.?

 \rightarrow a new disk tracer is necessary...

6. Summary

Summary: Millimeter observations can differentiate evolution even in the Class 0 stage.

See also press release from ASIAA!

Future plan:

- > To observe molecules not frozen-out in SMM11, such as N_2H^+ .
- > Dynamics of the possible disks around SMM4A and 4B.