Molecular Cloud Ionization: Where are the Cosmic Rays?

Thierry Montmerle

Institut d'Astrophysique de Paris, France

Trifid nebula (M20)

W28 SNR

Outline

- I. Cosmic Rays in a nutshell
- 2. Importance of low-energy cosmic rays
- 3. Bridging low and high energies
- 4. Concluding remarks

1. Cosmic Rays in a nutshell

(Swordy 2001)

Various proposed "demodulated" low-energy CR spectra

Indriolo+ 2009

2. Importance of low-energy cosmic rays in the Galaxy

Low-energy cosmic rays (LECR)

- Traditionally unknown spectrum and flux
 - solar modulation: $E_{CR} < I \text{ GeV/n}$
 - But new: "Local Interstellar Spectra": Voyager I (Cummings et al. 2016),
 - + propagation, etc. (Orlando 2017, Tatischeff+ 2018...)
- Tracing the first steps of (shock) acceleration?
 - e.g., vicinity of SNRs
- Important feedback effects on (local) environment (e.g., molecular cloud chemistry; + electrons)
- Role in star formation (coupling "neutral" matter with ISM magnetic field)
 - => ionization rate ζ, units 10^{-17} s⁻¹ ("Spitzer rate")
- => galactic distribution (from MC): new Voyager I
 data do not explain the observed rates!

Ionization rate measurements (see later): Diffuse vs. Dense Clouds

Diffuse clouds: ζ ≈0.5-3 x10⁻¹⁶s⁻¹

Dense clouds: ζ≈0.1-5 x10⁻¹⁷s⁻¹

(Swordy 2001)

Voyager I @ 40!

- Launched Sep.5, 1977
- Reached interstellar space (= beyond heliosphere) in Aug.
 2012
- Engines re-started Dec. I, 2017 to re-orient the antennas
- Now at >140 au from the Sun!

3. Bridging low and high energies?

In the Galaxy: Search for low-energy CR (LECR) where evidence for elevated high-energy CR (HECR) flux

• **GeV-TeV** CR: γ -ray emission [γ energy $\sim 10\%$ lower than parent CR]

• MeV-GeV CR: ionization of the gas (H₂⁺, He⁺, H⁺,...)

... by measuring and mapping the ionization rate ζ of selected "active" molecular clouds (e.g., with SNR) (fiducial value $\zeta_0 \sim 10^{-17} \, \text{s}^{-1}$ for the Galaxy: "Spitzer" rate; ionization fraction $\sim 10^{-7}$)

Chemical reactions network: Molecules... and radicals

#	Reaction		n	Reaction rates (cm ³ .s ⁻¹)
Reduced network (#1)	$CR + H_2$	<i>ζ</i> →	$H_2^+ + e^-$	ζ (s ⁻¹)
(#2)	$H_2^+ + H_2$	H ₂	$H_3^+ + H$	$k_{\rm H_2} = 2.1 \ 10^{-9}$
(#3)	H ₂ D ⁺ - CO	₩Đ	DCO ⁺ + H ₂	$k_D = 5.37 \ 10^{-10}$
(#4)	H ₃ ⁺ - CO	$\xrightarrow{k_{\mathcal{H}}}$	HCO ⁺ + H ₂	$k_H = 1.61 \ 10^{-9}$
(#5)	$H_3^+ + HD$	$\stackrel{k_f}{\rightleftharpoons}_{k_f^{-1}}$	$H_2D^+ + H_2$	$k_f = 1.7 \ 10^{-9}$
		K _f		$k_f^{-1} = 1.7 \ 10^{-9} \exp(-220/T)$
(#6)	$DCO^+ + e^-$	$\xrightarrow{\beta'}$	CO+D	$\beta' = 2.8 \ 10^{-7} (T/300)^{-0.69}$
(#7)	HCO ⁺ +e ⁻	$\xrightarrow{\beta'}$	CO+H	$\beta' = 2.8 \ 10^{-7} (T/300)^{-0.69}$
(#8)	$H_2D^+ + e^-$	<u>k</u> s	$\begin{array}{l} H + H + D \\ H_2 + D \\ HD + H \end{array}$	$k_{\rm e} = 6.00 \ 10^{-8} (T/300)^{-0.50}$
(#9)	H ₃ ⁺ +e ⁻	$\xrightarrow{\beta}$	H+ H+ H H ₂ +H	$\beta = 6.7 \ 10^{-8} (T/300)^{-0.69}$
(#10)	H + H	$\stackrel{k'}{\rightarrow}$	H_2	$k' = 4.95 \ 10^{-17} (T/300)^{0.50}$
(#11)	H + D	$\stackrel{k''}{\rightarrow}$	HD	$k'' = \sqrt{2}k'$
Additional reactions		.,		
(#12)	$H_2D^+ + CO$	$\stackrel{k'_{\mathcal{D}}}{\rightarrow}$	$HCO^+ + H_2$	$k_D' = 1.1 \ 10^{-9}$
(#13)	$CO^+ + HD$	kcq+	$DCO^+ + H$	$k_{CO^+} = 7.5 \ 10^{-10}$

Case study: W28 (~ galactic plane, not far from GC)

X-ray, "filled" SNR CGRO and HESS γ-ray source

 $d\sim 2-3~kpc$ $D\approx 20~pc$ Age $\sim 35-150,000~yrs$

В

18h

HESS J1800-240

18h03m

W28 =

SNR+SFR,

GeV/TeV

sources

RA J2000.0 (hrs)

W28 spectral fitting (π°) : > GeV protons

(Nava & Gabici 2013)

IRAM 30-m observations of W28: near and far from the shock

W28: Enhanced ionization (x \sim 100) downstream of the shock

- ⇔ enhancement of LECR
 - \approx enhancement of *local* HECR from π° -decay γ -rays
 - >> enhancement of galactic HECR from π° -decay γ -rays

Where are the (low-energy) cosmic rays?

- Cummings et al. (2016) and Phan et al. (2018), taking into account the "local" interstellar LECR measurements ("Local Interstellar Spectrum", LIS: Voyager I), have shown that if the LIS is identical throughout the Galaxy, it is *impossible to explain* the observed ionization rate of molecular clouds (≥ 1-2 orders of magnitude too low)
- Phan et al. (2018) proposed a new, detailed model for the penetration of LECR into molecular clouds (with advection, diffusion, energy losses, magnetic turbulence, etc.) and give the resulting (reduced) ionization rates (p + e)
- => invoke very-low energy "suprathermal" CR (< 3 MeV/n)?
- Counterexamples ? See W28

Very low-energy cosmic rays ??

Cummings+ 2016

4 V. H. M. Phan et al. (2018)

Figure 3. Data of the CR intensity for protons (left) and electrons (right) taken from Voyager 1 (Cummings et al. 2016) and AMS-02 (Aguilar et al. 2014, 2015) compared with the fitted curve used in this work.

Fit: broken power-law CR spectrum (< 3 MeV – 100 GeV)

ISM ionization by GCR: fact. > 10 too low!

points are from Caselli et al. (1998) (blue filled circles), Williams et al. (1998) (blue empty triangle), Maret & Bergin (2007) (purple asterisk), and Indriolo & McCall (2012) (black filled squares are data points while yellow filled inverted triangles are upper limits).

LECR penetration limited by MHD effects in diffuse envelope

W28: Enhanced ionization (x \sim 100) downstream of the shock

⇔ enhancement of local LECR (= near SNR shock)

But ~ "Voyager value" far from the shock !?

4. Concluding remarks

- Origin of cosmic rays still a puzzle, in spite (or because) of recent advances
- For galactic cosmic rays, supernova remnants interacting with molecular clouds are a good laboratory for studying hadron acceleration
 - via γ-rays at high energies (down to ~ 280 MeV, π° -decay threshold)
 - via mm observations+astrochemistry at low energies (molecular cloud ionization)
- However, Voyager I results pose a new challenge: where are the low-energy cosmic rays necessary for ISM ionization?

