ALMA CO/¹³CO/C¹⁸O Absorption Smallest Structures in GMCs in MW

Jin Koda

Stony Brook University

Collaborators: Nick Scoville (Caltech), Tsuyoshi Sawada (NAOJ, JAO), Sachiko Onodera (Meisei U.), Tetsuo Hasegawa, Seiichi Sakamoto (NAOJ)

Evolution of Gas Phase in Galaxies

Outer gas-poor part

Synthesis of literature work (see Koda et al. 2009; Koda, Scoville & Heyer 2016)

Cloud Structure: Continuous or Droplets?

Molecular absorptions toward compact QSOs with ALMA highest spatial & velocity resolutions

Molecular Absorption at High Galactic Latitude

Limited at high latitudes where bright QSOs exist

Plateau de Bure Interferometer

HCO+(1-0) Absorption

Narrow line width (dV~1km/s)

A series of historic work by Harvey Liszt and his collaborators (1993-2018); e.g. , Marscher et al. 1991, 1993; Moore & Marscher 1995; Wilkind & Combes 1996, 1997; Ando et al. 2016; many more

Two QSOs directly behind MW

Spatial resolution limited by the sizes of the QSOs <10milliarcsec

J1924+1540 (l,b)~(50.63, **-0.03**)

Size < 10 milli-arcsec ~ 100AU at 10kpc

J1851+0035 (l,b)~(33.50, **+0.19**)

Churchwell et al. 2009

Jorma

Observation Parameters

	Molecles	Transition	Resolution	
NRO45 Emission	<mark>CO</mark> , 13CO, <mark>C18O</mark>	J=1-0	15"	0.34 km/s
ALMA Absorption	<mark>CO</mark> , 13CO, <mark>C18O</mark>	J=1-0 & 2-1	<10milliarcsec	~0.04 km/s

Nobeyama 45m telescope (NRO45): ~15 arcsec beam

ALMA+QSO: <~ 10 mili-arcsec

Velocity Resolution

Spatial Resolution

Resolve sound speed of ~10K gas (~0.2km/s) Trace ~10-100 AU scale structures

NRO45 Emission & ALMA Absorption

Case Δ · T = >>1				Heart of cloud?
Cust	1 2C	$O(1-0)^{-2}$		
Case	τ _{12CO(1-0)}	13CO Absorption	12CO&13CO Emission	
А	>>1	Present	Present	

Case $\mathbf{R} \cdot \mathbf{T}_{\mathbf{r}} \sim 2$				Cloud edge?
Cust		O(1-0) -		
Case	τ _{12CO(1-0)}	13CO Absorption	12CO&13CO Emission	
В	~1	Absent	Present	

Case	e C : τ _{12C}	O(1-0) ~O		Cloud edge?
Case	τ _{12CO(1-0)}	13CO Absorption	12CO&13CO Emission	
С	~0	Absent	Present	

Case A: τ_{CO(1-0)}>>1

CO Saturated, but Multiple Droplets in 13CO

13CO emission & τ_{13CO} profiles different \rightarrow Spatial variations w/i NRO45 beam CO saturated ($\tau_{12CO(1-0)}$ >>1) \rightarrow molecular gas between droplets as well

Case A: T_{CO(1-0)}>>1 Multi-component Gaussian Fit

Velocity dispersion ~ Sound speed

→ Droplets supported by thermal pressure, not by turbulent pressure

Excitation Temperature (T_{ex}) from τ_{21}/τ_{10}

The uncertainty of beam filling factor is NOT a problem. 10-100 AU resolution justifies One-zone approx. & LTE assumption

Case A: τ_{CO(1-0)}>>1

Case B: τ_{CO(1-0)}~1

Excitation Temperature from Absorption

Temperature ~4-6K – colder than typically assumed ~10-15K

Extended component between droplets see in 12CO

Size of Droplet: From Observed Numbers

Case B: τ_{CO(1-0)}~1

Case B: τ_{12CO(1-0)}~1, Case C: τ_{12CO(1-0)}~0

Similar analysis

→ Droplets exist in CO absorption; ambient gas at very low level

Case B (τ_{12CO(2-1)}~1) & Case C (~0)

Only little inter-droplet gas near the edge

Synthesis as Summary

Geometry could be spheres (droplets), filaments, or sheets

