The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A

Evgenia Koumpia, D. Semenov, F. van der Tak, A. Boogert, E. Caux (A&A, 2017)

Background image: Spitzer IRAC 3.6-8 µm

FIERSCHEI

How does a Class 0 protostar look like?

Physical & chemical structure of a Class 0 protostar

Hot corino chemistry vs shock enhancement? -> resolution limitations -> diluted emission

Timescale for freeze-out: $\sim 2 \times 10^9$ /n yr

van Dishoeck 2007

Importance of outflow cavities ?

Chemical structure of IRAS 4A

Goal #1

Investigate the importance of the outflow cavities

Goal #2

Compare this low mass case with a high mass counterpart (AFGL 2591)

Observations

Herschel

HIFI-Band 2 Spectral Scans

bands 2a-2b: 479-375µm, 626-800 GHz

ϑ (band 2) ~ 30"

RMS noise ~ 30 mK

Detected Species

CO, ¹³CO, C¹⁸O, CS, HCN,

 HCO^+ , N_2H^+ , H_2CO , CH_3OH ,

 H_2O

JCMT

HARP-B/ACSIS

325-375 GHz, Field of view (2'x2')

ð ~ 15"

RMS noise ~ 15mK

Detected Species

HCN (4-3), $H^{13}CO^+$, H_2D^+ , N_2H^+ , ¹³CO, CH₃OH, C¹⁷O, SO, SiO, H₂CO, HCO⁺, DCO⁺, HNC

> Searched but not found in HIFI range

Observed and modeled abundances of 17 species

Method

Modeling the emission

Freeze out zone is important

Simulating an outflow cavity

Outflow cavities are important (e.g. CO, HCO⁺, DCO⁺)

Comparison with a high mass protostar

High vs low mass protostar:

- 1-2 orders of magnitude higher abundances (wrt H₂) but similar wrt CO
- No need for UV cavities
- Absence of freeze out zones (e.g. CO)

Possible explanation

Absence of freeze out zone

Koumpia et al. 2017 (A&A, 603A, 88K)

a) The CH₃OH modeled abundance profile points towards an age of $\ge 4 \times 10^4$ yrs for IRAS 4A

b) The spatial distribution of H_2D^+ differs from other deuterated species (i.e. DCO⁺, HDCO and D_2CO) \rightarrow colder layer (<20 K) in the foreground?

Not seen in any other tracer !

Secondary Results

c) Enhanced deuterated species towards the outflow

Conclusions

The observed abundances can be explained by different mechanisms:

a) high mass \rightarrow *passive* heating

b) low mass → UV cavity channels

The presence/absence of *freeze out zone* influences the absolute values of the abundances (higher towards AFG 2591).