Theoretical Modeling of Massive Star Formation Kei E. I. Tanaka (Osaka Univ. / NAOJ) J. C. Tan (Chalmers/Virginia), Y. Zhang (RIKEN), T. Hosokawa (Kyoto), V. Rosero (NRAO), J. E. Staff (Virgin Islands), J. M. De Buizer (SOFIA), M. Liu (Virginia), K. Tomida (Osaka) and more

Toward Understanding Massive Star Formation*

Hans Zinnecker¹ and Harold W. Yorke²

2007, ARAA, 45, 481

Figure 1

Accretion and mass loss as exchange between components: the accretion disk is reservoir and interface between the molecular cloud core and the forming star.

Theoretical Modeling of Massive Star Formation Kei E. I. Tanaka (Osaka Univ. / NAOJ) J. C. Tan (Chalmers/Virginia), Y. Zhang (RIKEN), T. Hosokawa (Kyoto), V. Rosero (NRAO), J. E. Staff (Virgin Islands), J. M. De Buizer (SOFIA), M. Liu (Virginia), K. Tomida (Osaka) and more

Figure 1

Accretion and mass loss as exchange between components: the accretion disk is reservoir and interface between the molecular cloud core and the forming star.

30 Dor & R136a ~300M⊙

Massive stars are important throughout the cosmic history

radiation, winds, SNe, metal & dust, GRBs, GW

GW150914 ~ 36 + 29M⊙

30 Dor & R136a ~300M⊙

Massive stars are important throughout the cosmic history

radiation, winds, SNe, metal & dust, GRBs, GW

GW150914 ~ 36 + 29M⊙

30 Dor & R136a ~300M⊙

Massive stars are important throughout the cosmic history

radiation, winds, SNe, metal & dust, GRBs, GW

GW150914 ~ 36 + 29M⊙

30 Dor & R136a ~300M⊙

Massive stars are important throughout the cosmic history

radiation, winds, SNe, metal & dust, GRBs, GW

GW150914 ~ 36 + 29M⊙

30 Dor & R136a ~300M⊙

Massive stars are important throughout the cosmic history

radiation, winds, SNe, metal & dust, GRBs, GW

We study the impact of multiple feedback processes in massive SF at various metallicities

GW150914 ~ 36 + 29M⊙

The key to connect the present & early Universe!!

Feedback in Low-Mass Star Formation

SFE ~ 0.4

~0.1pc

low-mass SF **MHD Disk Wind**

Feedback in Low-Mass Star Formation

SFE ~ 0.4

~0.1pc

low-mass SF **MHD Disk Wind**

also in massive SF!!

Matsushita+17

Hirota+17

Feedback in Massive Star Formation

M_{max} =40 M_{\odot} in spherical case

Rosen+16

low-mass SF MHD Disk Wind

also in massive SF!! KT+17, Matsushita+17

massive SF Radiation Pressure Krumholz+09, Kuiper+10, etc

Feedback in First Star Formation

typically ~50-100M⊙ from 1000M⊙ core

low-mass SF MHD Disk Wind also in massive SF!! KT+17, Matsushita+17

massive SF Radiation Pressure

Krumholz+09, Kuiper+10, etc

First SF in the early universe **Photoevaporation** McKee&Tan08, Hosokawa+11, etc

Multiple Feedback in Massive SF

Those processes were studied separately, but all feedback acts together in reality

How do all feedback mechanisms work together? Which is the dominant feedback? **Does feedback set the upper mass limit? or shape IMF?**

low-mass SF **MHD Disk Wind**

massive SF **Radiation Pressure + Stellar Wind**

First SF **Photoevaporation**

Multiple Feedback in Massive SF

Rolf did!! Kuiper & Hosokawa, accepted by A&A

How do all feedback mechanisms work together? Which is the dominant feedback? Does feedback set the upper mass limit? or shape IMF? *How do they depend on metallicity and clump density*?

MHD disk wind radiation pressure photoevaporation

Anna also!!

Rosen+, in prep.

Us too!! KT+17,18, ApJ

Overview of Our Semi-Analytic Model

core collapse + disk form. + MHD wind + photo-evap. + star evol. + rad press. + stellar wind acc. rate: $m_* = M_{env} \cos \theta_{esc} - m_{dw} - m_{pe} - m_{sw}$

We solve the evolution of protostars, accretion flow structures, and feedback processes self-consistently until the end of accretion (mdot=0)

and evaluate SFEs from initial cores

The dominant feedback? The upper-mass limit by feedback? The metallicity dependence?

Impact of Multiple Feedback

KT, Tan, & Zhang, 2017, ApJ, 835, 32

Radiation feedback reduces SFE SFE= $0.47 \rightarrow 0.29$ in this case

Star Formation Efficiencies

lower SFE in higher-mass SF due to radiative feedback

No upper limit by feedback

Unlike models with a truncation at100M⊙ cf. stars with >100M⊙ in 30 Dor

Star Formation Efficiencies

lower SFE in higher-mass SF due to radiative feedback

No upper limit by feedback

Unlike models with a truncation at100M⊙ cf. stars with >100M⊙ in 30 Dor

lower SFE at larger core

recall Rolf Kuiper's talk!

Which is the dominant feedback?

Momentum-driven outflow is dominant MHD disk wind? or Radiation pressure?

Which is the dominant feedback?

momentum [Mokm s⁻¹] **b**0

KT, Tan, Zhang, & Hosokawa, 2018, ApJ, 861, 68

Feedback at Low Metal icities

Photo-evap.

At Z⊙, **Outflow is strongest**

Outflow

At <0.01Z⊙, **PE becomes dominant**

Dust attenuation regulates PE rate $\dot{M}_{\rm evp} \sim \frac{M_{\rm evp,Z=0}}{}$ $1 + \tau_d$

 $T_d \ll 1$ at Z<1e-3Z \odot

SFEs at Various Metallicities

Feedback does not set the upper-mass limit!

lower SFE in higher-mass SF due to stronger feedback

lower SFE at lower Z due to efficient photo-evap.

Non-Universal IMF?

- At sol to sub-sol metal of $1-0.1Z_{\odot}$, Z dependence is not apparent. **Σ**_{cl} dependence is more significant
- At extremely low Z case of 10^{-5} $10^{-3}Z_{\odot}$, massive stars would be rarer

Typical metallicity of 2nd stars (Chiaki+18)

NOTE: CMF should also depend on environments

Massive cores are rare at $\geq 1e-5Z\odot$ (Omukai&Tsuribe05)

Synthetic & Actual Observations

synthetic obs: KT+16, ApJ, 835, 32; KT+17, ApJ, 849, 133; Zhang&Tan 2018, etc

actual obs: De Buizer+KT17, 843, 33; Rosero, KT+submitted, arXiv:1809.01264; Zhang, Tan, KT+submitted

Synthetic & Actual Observations

Synthetic Observations

Synthetic & Actual Observations

Synthetic Observations

IR survey by SOFIA

An east of Line 50FIA 37ab 41.0'04 101 cm-2) 10-8 ψħ 10-9 5 ° 10-10 4 10-11 10-12 10 100 1000 λ (μm)

follow-up by **ALMA & VLÁ**

Multiple Feedback in Massive SF

Feedback does not set the upper mass limit SFE is lower at lower Σ_{cl} MHD disk wind is dominant at $>0.1Z_{\odot}$ SFE is lower due to effective PE at <0.01Z⊙ Real observations are also on-going

We develop the model of massive SF with multiple feedback

